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A numerical study is presented of the motion of two-dimensional, doubly periodic, 
dilute and concentrated emulsions of liquid drops with constant surface tension, 
subject to a simple shear flow. The numerical method is based on a boundary 
integral formulation that employs a Green’s function for doubly periodic Stokes 
flow, computed using the Ewald summation method. Under the assumption that the 
viscosity of the drops is equal to that of the ambient fluid, the motion is examined 
in a broad range of capillary numbers, volume fractions, and initial geometrical 
configurations. The latter include square and hexagonal lattices of circular and 
closely packed hexagonal drops with rounded corners. Based on the nature of 
the asymptotic motion at large times, a phase diagram is constructed separating 
regions where periodic motion is established, or the emulsion is destabilized due 
to continued elongation or coalescence of intercepting drops. Comparisons with 
previous computations for bounded systems illustrate the significance of the walls 
on the evolution and rheological properties of an emulsion. It is shown that the 
shearing flow is able to stabilize a concentrated emulsion against the tendency of 
the drops to become circular and coalesce, thereby allowing for periodic evolution 
even when the volume fraction of the suspended phase might be close to that for dry 
foam. This suggests that the imposed shearing flow plays a role similar to that of the 
disjoining pressure for stationary foam. At high volume fractions, the geometry of the 
microstructure and flow at the Plateau borders and within the thin films separating 
adjacent drops are illustrated and discussed with reference to the predictions of 
the quasi-steady theory of foam. Although the accuracy of certain fundamental 
assumptions underlying the quasi-steady theory is not confirmed by the numerical 
results, we find qualitative agreement regarding the basic geometrical features of the 
evolving microstructure and effective rheological properties of the emulsion. 

1. Introduction 
Suspensions of liquid drops and gas bubbles are known to exhibit a broad range 

of rheological behaviours dependent primarily upon the volume fraction of the 
suspended phase, but also upon the physical properties of the fluids and fluid 
interfaces. The behaviour at low volume fractions may be analysed by conducting 
studies of the individual drop or bubble motions and deformations in virtually infinite 
definable flows (Kennedy, Pozrikidis & Skalak 1994; Pozrikidis 1994; Stone 1994), 
but studying the motion at moderate and high volume fractions is challenged by 
the geometrical complexity of the interfacial configurations and by uncertainties in 
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identifying the particle distributions and dominant modes of fluid motion at close 
particle contact. 

The structure and motion of an emulsion at high volume fractions is best described 
in terms of the shape and deformation of the thin films that separate neighbouring 
bubbles or drops, and their multiple junctions called Plateau borders (Kraynik 1988). 
This point of view led Princen (1979, 1983) and a number of subsequent authors 
to consider the geometrical structure of the films and Plateau borders in a model 
system consisting of an ordered two-dimensional network of hexagonal drops placed 
on the vertices of a regular doubly periodic hexagonal lattice. When the motion is 
due to an imposed simple shear flow, the displacements of the centres of the drop 
and mid-points of the thin films are affine with respect to the applied macroscopic 
strain, and the instantaneous structure of the foam may be determined from the 
instantaneous strain without reference to the history of deformation (Khan 1985; 
Pacetti 1985; Kraynik & Hansen 1986). To carry out the analysis, it is necessary 
to make several assumptions regarding the geometry of the instantaneous structure 
including, in particular, the magnitude of the angles subtended by the films and the 
curvature of the interfaces enclosing the Plateau borders. The fluid flow inside the 
bubbles or drops and within the thin films and Plateau borders is considered to be of 
secondary importance and does not enter the model to this level of approximation. 

Several subsequent attempts have been made to account for the effect of the 
fluid flow on both the geometry of the foam and its effective constitutive equation. 
Khan & Armstrong (1987) and Kraynik & Hansen (1987) accounted for the effect 
of the film-level flows on the geometry of the foam and effective stress tensor. 
Their results rely on the assumption that the films are instantaneously subjected to 
uniform extensional flows during the deformation. The validity of this assumption 
was questioned by Schwartz & Princen (1987) and Reinelt & Kraynik (1989, 1990) 
who used the film withdrawal mechanism of Mysels, Shinoda & Frankel (1959) to 
develop an improved hydrodynamic model. Their final expression for the effective 
stress contains a hydrodynamic correction term that involves the capillary number 
Ca expressing the ratio between shearing viscous forces and surface tension. 

Reinelt & Kraynik (1989, 1990), in particular, considered the effect of the fluid 
flow on the geometry of the foam in the limit of small capillary number. A key 
assumption in their model is that the distribution of surfactants over the interfaces is 
adjusted to render the interfaces at the transition region next to the Plateau borders 
inextensible, and yield a distribution of surface tension that is consistent with the 
assumed model of fluid flow. Their results showed that the foam exhibits elastic 
behaviour, the effective viscosity increases with increasing volume fraction of the 
suspended phase, and the viscous contribution to the instantaneous effective stress 
scales with the capillary number raised to the $ power. 

In this paper we present a numerical study of the motion of dilute and concentrated 
emulsions of liquid drops in simple shear flow. The equations governing the fluid flow 
within each phase are solved exactly without any approximations, except from those 
involved in the assumptions of low-Reynolds-number flow, and the stipulation that 
the interfaces exhibit constant surface tension. The latter precludes the presence of 
surfactants. To the authors’ knowledge, this is the first attempt to quantify the hy- 
drodynamics of unbounded densely dispersed fluid systems relaxing the assumptions 
of the lubrication models. 

Adopting Princen’s approach, we consider monodisperse, doubly periodic, ordered, 
two-dimensional systems. The numerical studies are conducted by solving a series 
of initial-value problems corresponding to different initial drop shapes and lattice 



Emulsions and foams 381 

configurations, and the results span the whole range from the dilute limit where drop 
interactions are insignificant, to the highly concentrated limit where drop interactions 
are dominant. Comparisons between the present results for doubly periodic systems 
and those of Zhou & Pozrikidis (1993a, b), for emulsions within a channel with parallel 
walls, allow us to assess the significance of the boundaries on the structure and effective 
rheological properties of an emulsion. Furthermore, comparisons between the present 
results at high volume fractions and the predictions of the theories of foam allow us 
to assess the accuracy of the approximations involved in previous studies. 

An important issue pertinent to the behaviour of a concentrated emulsion at a 
volume fraction higher than that corresponding to maximum packing of circular drops 
is its long-term viability in the absence of stabilizing intermolecular forces. As the 
drops press against each other in an effort to obtain a circular shape, the intervening 
thin films rupture and the emulsion breaks down in a finite time. The action of 
intermolecular forces has been implicit in previous models of foam through the 
presence of black film zones and the assumed stable behaviour of the transient zones 
connecting the thin films to the Plateau borders, but is not included in the present 
formulation. We shall show, however, that, within a certain range of parameters, the 
shear flow is able to stabilize the thin films by means of rolling interfacial motions, 
thereby allowing for periodic behaviour that turns out to be similar to that prescribed 
in previous studies. 

The present computations are carried out on the basis of the method of interfacial 
dynamics, which is an advanced implementation of the boundary integral method 
(Pozrikidis 1992; Zhou & Pozrikidis 1993a, b). One crucial aspect of the mathematical 
formulation is the use of a new Green’s function representing the doubly periodic flow 
produced by two-dimensional point forces that are located at the nodes of a generally 
non-orthogonal two-dimensional lattice. We find that the most efficient way of 
computing this Green’s function is by integrating the corresponding three-dimensional 
periodic Green’s function in one direction, thus maintaining the crucial benefits of 
the Ewald summation method (Beenaker 1986; Brady et al. 1988; Pozrikidis 1993). 
The efficient computation of the Green’s function is indispensable for the practical 
feasibility of the present numerical study. 

2. Problem formulation 
We consider the evolution of a two-dimensional, doubly periodic, monodisperse 

suspension of deformable liquid drops with viscosity Ap suspended in an ambient fluid 
with viscosity p. The surface tension of the interfaces y is assumed to be constant. 
At the initial instant, the drops are arranged at the vertices of a regular square or 
hexagonal lattice as shown in figure l(a, b). The initial configuration of the suspension 
is defined by specifying (i) the two lattice base vectors al and a2, which are assumed 
to be of equal length L, (ii) the drop volume fraction, 6, and (iii) the initial drop 
shape. When the base vectors are perpendicular to each other we obtain a rectangular 
lattice, whereas when they form an angle of 2n/3 we obtain a hexagonal lattice. 

The motion is driven by an external unbounded simple shear flow with shear rate k ,  
urn = (kx2,0), directed along the base vector al. The base vectors behave like material 
lines and are thus convected by the unperturbed shear flow. The base vector al 
remains constant independent of time, a1 = (L,  0), whereas a2 = a2(t  = 0) + (ka2,+, 0), 
where ~ 2 , ~  is the y-component of u2. 

When the Reynolds number Re based on the shear rate k and the equivalent drop 
radius a is small, Re = k a 2 / v  where v is the kinematic viscosity, the flow is governed 
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FIGURE 1. Schematic illustration of a doubly periodic suspension of two-dimensional drops in 
infinite simple shear flow. (a) Circular drops with radius a on a square lattice with base vectors al 
and a2. (b) Hexagonal drops with rounded corners on a regular hexagonal lattice. Shown are thin 
films of thickness 2h0, the characteristic cell size b, and Plateau borders with radii of curvature ro. 

by the continuity equation 

v . u = o  (2.1) 

- v p + A p ~ ~ u = o  or - v p + p v 2 u = 0  (2.2) 

and the Stokes equation 

inside or outside the drops. 
Following the standard boundary integral formulation for Stokes flow, under the 

additional stipulation that 1 = 1, we obtain the velocity field iz terms of the incident 
flow u" and a single-layer potential due to the discontinuity in surface force across 
the interfaces Af, 

(Pozrikidis 1992, Chapter 5) .  The integration is over the interface of an arbitrary drop 
C in the lattice. Equation (2.3) is valid both inside and outside the drops as well as 
at the interfaces. The assumption A = 1 allows us to obtain the interfacial velocity 
simply by computing a line integral instead of solving a Fredholm integral equation 
of the second kind as required when I # 1 (Pozrikidis 1992). 

An important feature of the boundary integral representation (2.3) is the use of the 
Green's function GDp representing the doubly periodic flow due to a two-dimensional 
periodic lattice of point forces with base vectors a1 and a 2 .  The superscript D p  stands 
for doubly periodic. Details on the derivation and numerical computation of G D p  in 
terms of Ewald sums are given in the Appendix. 

Denoting the curvature of the drop interface in the (xl,x2)-plane by K and the 
unit vector normal to the interface pointing into the ambient fluid by n, we express 
the difference of surface force across the drop interface as Af = y l c n .  Substituting 
this expression into (2.3), setting urn = (kx2,0), and non-dimensionalizing all variables 
using the equivalent drop radius a as characteristic length, ka as characteristic velocity, 
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pk as characteristic stress, we obtain the following dimensionless integral equation : 

The drop capillary number Ca in (2.4) is defined as k a p / y .  It is clear from equation 
(2.4) that the flow field is determined from knowledge of the instantaneous position 
and shape of the drops and the value of Ca. 

Since the suspension is homogeneous in both the XI and x2 directions, the effective 
stress tensor nEFF can be calculated in terms of volume average of the local stress 
field over a unit cell as discussed by Batchelor (1970). Here we adopt the alternative 
but equivalent formalism of Zhou & Pozrikidis (19934 and define 

(2.5) 
EFF - EFF aij - 2peij + -Zi j ,  

where eEFF represents the average of the rate of strain tensor given by e y  = 

Ik(  2 1 - dij), A is the total area of a unit cell, 

A 

is the surface-energy tensor, and t is the unit vector tangential to the interface 
pointing in the counter-clockwise direction. The effective viscosity p E F F  and normal 
stress difference A'- are defined as 

3. Numerical methods 
The numerical procedure is similar to that developed and implemented by Zhou & 

Pozrikidis (1993a, b) with some minor variations. Briefly, we describe the interface of a 
drop using a set of marker points, and approximate its shape using cubic splines that 
are defined with respect to arclength around the drop. At each time step, we adjust 
the distribution of the marker points by adding new points or removing existing 
points so as to (i) maintain the distance between two neighbouring marker points 
within preset maximum and minimum thresholds, and (ii) maintain the magnitude of 
the angles subtended by the circular arcs that connect three successive points below 
another threshold value. 

The integral in (2.4) is computed using the four-point Gauss-Legendre quadrature 
over each boundary segment. As z approaches 20, the kernel G t P ( z , z O )  behaves 
like In r ,  where r = Iz - 201. To remove this logarithmic singularity, we replace K(Z) 

by ~ ( x )  - rc(z0) in the numerical integration of (2.4). The incompressibility of the 
flow due to a point force guarantees that this modification does not alter the value 
of the original integral. An apparent difficulty arises when two drops move close to 
each other but are still separated by a thin film, which means that x approaches zo 
from a neighbouring interface, but we find that the integral in (2.4) is still computed 
accurately using the Gaussian quadrature due to the weak nature of the singularity 
of the integrand. 

To advance the position of the marker points we use the Runge-Kutta-Fehlberg 
methods of order three (RKF23) or five (RKF45). The higher-order adaptive time- 
step method RKF45 becomes necessary for handling the stiffness of the differential 
equations at high volume fractions where the velocity gradients are large. 
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FIGURE 2. (a) Comparison of drop shapes at time k t  = 1/$ for 4 = 0.93 and Ca = 0.02: -----, 
initial number of marker points N = 60; -, a refined computation with N = 84 (almost indis- 
tinguishable on the figures). ( b )  A close look at the horizontal film region of (a). (c,d) Magnified 
plots of the thin films enclosed by the rectangles shown in figure 7( j ) ,  showing the marker points, 
o and x, around the drop interface. In all subsequent figures of drop profiles, the horizontal and 
vertical axes will correspond to the dimensionless distances X = 2 x / L ,  Y = 2 y / L ,  where a1 = (L,O). 

To demonstrate the accuracy and convergence of the numerical method, we com- 
pare the results of two computations with identical initial conditions corresponding 
to volume fraction 4 = 0.93 and Ca = 0.02, but with different initial number of 
marker points, N = 60 and N = 84. In figure 2(a,b)  we plot with solid and dashed 
lines the profiles of the interfaces at time kt = l/& at which point the number of 
marker points has increased, respectively, to N = 66 and N = 98 due to the adaptive 
point redistribution. Small differences can be detected only near the high curvature 
regions and are of the order of the error of the numerical method used to carry out 
the spline interpolation. 

When the drops are close to each other, a sufficiently fine discretization of the 
interfaces is necessary in order to obtain accurate solutions. To illustrate the discrete 
interfacial representation at small drop separations and associated distribution of 
marker points at high volume fractions beyond maximum packing, we zoom into the 
thin film regions indicated by the rectangles of figure 7 ( j )  (for discussions see 06.1) 
and present the enlarged pictures in figure 2(c,d).  Since in the blown-up pictures 
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the length scales in the x1 and x2 directions are different, figure 2(c,d) should be 
inspected in conjunction with figure 7(j). To this end, it is important to note that 
the boundary integral method does not require that the spacing between the marker 
points be smaller than the minimum distance between two neighbouring interfaces, 
unless the curvature is prohibitively large. The overall accuracy of the numerical 
method is determined by the computations of the interfacial curvature and weakly 
singular integrals. In all cases, the change in the area of a drop due to numerical 
error was less than 0.2% during the course of a complete computation. 

A complete computation typically required 2 hr to 8 hr of CPU time on the CRAY 
C90 computer of the San Diego Supercomputer Center. 

4. Square lattices 
We begin by considering monodisperse suspensions with initially circular drops 

of radius a, placed at the vertices of a square lattice with length L as shown in 
figure l(a). The maximum volume fraction corresponding to touching drops with 
L/a = 2 is 4LA, = n/4 rn 0.7854. 

Not surprisingly, we find that when L / a  = 8, corresponding to a small volume 
fraction of 4 = 0.04909, the drops deform as if they were suspended alone in 
an infinite shear flow. At small values of Ca, the drops elongate and reach an 
almost stationary shape while exhibiting small oscillations due to the overpassing and 
underpassing arrays. The nearly stationary asymptotic shapes become more elongated 
as the capillary number is increased, and at a critical capillary number, estimated to 
be between 1.00 and 1.75, they continue to deform and elongate under the action of 
the shear flow. 

To identify the significance of boundary walls on the flow of an emulsion, we 
compare the present results for doubly periodic systems to those reported in a 
previous paper for simply periodic suspensions in plane Couette flow between two 
rigid walls (Zhou & Pozrikidis 1993a), and find identical behaviours. Comparing, 
in particular, the corresponding evolutions of the Taylor deformation parameter 
defined as D = ( A  - B ) / ( A  + B) ,  where A and B are respectively the maximum and 
minimum dimension of the drop, and the drop orientation angle 8 computed using 
the eigenvectors of the drop inertial tensor, with those shown in figure 2(a, b) of Zhou 
& Pozrikidis (1993~) for a range of values of Ca, we find that they are virtually 
indistinguishable. This agreement serves to confirm the accuracy of the numerical 
method. 

Interactions between drops in neighbouring layers become noticeable when the 
drop volume fraction is increased to 0.4418, corresponding to L/a = 813. The effect 
of the overpassing drops is manifested by strong oscillation in the drop shape and 
associated geometrical properties including D and 8. As in the case of small volume 
fractions, we find that there exists a critical capillary number, placed between 0.25 
and 0.75, under which the drops deform and execute periodic motion and above 
which the drops continue to deform without ever reaching a periodic state. 

Comparing the present results to those of Zhou & Pozrikidis (1993~) for bounded 
Couette flow shows that the critical capillary number for doubly periodic flow is 
higher than that for bounded flow. This is because the mutual interactions between 
the drops are weaker than the interactions between the drops and the solid walls. 



386 X. Li, H .  Zhou and C. Pozrikidis 

0 

-1 
Y 

-2 

-3 

-4 

- 3 - 2 - 1  0 1 2  3 4 
X 

(c)  

, \ . , . \ . ' . \ . ,  
- 3 - 2 - 1  0 1 2  3 4 

X 

3 

2 

1 

0 

-1 
Y 

-2 

-3 

-4 
b . , .  ..,. . . I .  . . , . I  

- 3 - 2 - 1  0 1 2  3 4 

X 

- 3 - 2 - 1  0 1 2  3 4 

X 

- 3 - 2 - 1  0 1 2  3 4 

X 
FIGURE 3.  Drop profiles evolving from an initially hexagonal lattice of circular drops with 
4 = 0.7495 and Ca = 0.02527 at time (a) kt  = 0, ( b )  I/$, (c) 2 1 3 ,  (4 3/$, (el 4/$. 

5. Hexagonal lattices at low and moderate concentrations 
In the main body of the numerical studies we consider the evolution of drops that 

are initially arranged on a regular hexagonal lattice. The direction of the shear flow 
coincides with the first, time-independent, base vector of the lattice. In the present 
section we discuss the motion of initially circular drops at volume fractions less 
than that corresponding to touching circular drops on a regular hexagonal lattice, 
c$",,, = 0.9069. 
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The behaviour at small volume fractions is similar to that for the square lattice 
described in the preceding section. To illustrate the motion at higher volume fractions, 
in figure 3 we present a series of drop profiles for Ca = 0.02527 and volume 
fraction 4 = 0.7495. This particular case was chosen so as to match the geometric 
configuration of a four-layered suspension in a bounded Couette flow studied by 
Zhou & Pozrikidis (1993b). At this relatively small value of Ca, the drops deform 
and then evolve in a periodic manner with period kT = 2/$. It is worth noting 
that the arrangement shown in figure 3(b,d) corresponds to a rectangular array of 
nearly rectangular drops with rounded corners, which identifies the present evolution 
with that of a rectangular array of non-circular drops. The evolutions of the drop 
Taylor deformation parameter D and orientation angle 6/71 are shown in figure 4(a). D 
varies between 0.04284 to 0.117 while 8 oscillates between 0.05274.n and 0.231.n. These 
large variations indicate that the drops are subjected to substantial deformations and 
flipping motions. 

Both the qualitative and quantitative features in the evolution of D and 8 in figure 
4(a) are similar to those of the drops in the middle row of the four-layered suspension 
studied by Zhou & Pozrikidis (1993b). The latter are shown in figure 4(a) with the 
plain solid and dashed curves. A comparison suggests that, at this relatively high 
volume fraction, the presence of boundaries affects the deformation of the drops that 
are adjacent to the walls, but has little influence on the drops in the layers away from 
the walls. Furthermore, the general features of the drop deformation are similar to 
those of three-dimensional drops on a three-dimensional lattice studied by Pozrikidis 
( 1993), and this agreement corroborates the physical relevance of the two-dimensional 
model. 

In figure 4(&e), we present the evolution of the viscometric functions including 
the effective viscosity ,L~EFF and normal stress difference N, for 4 = 0.7495 and 
Ca = 0.02527,0.2527. The corresponding results for a four-layered suspension in a 
channel (Zhou & Pozrikidis 1993b) are shown with dashed lines. We observe similar 
behaviours at long times, but note that the magnitude of oscillations in both ,uEFF 

and N are larger in the doubly periodic than in the bounded suspensions. This 
difference is attributed to the fact that the drops adjacent to the walls do not oscillate 
as strongly as those in the middle layers. As a result, the effective stresses, which 
are computed in terms of integrals over all the drop interfaces, show oscillations of 
reduced amplitude in the bounded system. 

The differences in the viscometric functions between bounded and unbounded 
systems become milder as the capillary number is increased from Ca = 0.02527 
to Ca = 0.2527. This is because the relative differences in the deformation of the 
drops that are adjacent to the walls and those in the bulk of the flow are masked 
by the enhanced drop deformations due to the weaker action of surface tension. 
The behaviour of the four-layered suspension is already close to that of the doubly 
periodic suspension, and the differences are expected to diminish as the number of 
layers in the bounded system is further increased. 

6. Hexagonal lattices at high concentrations 
When the volume fraction of the suspended drops is higher than the critical value 

of $n/8 = 0.6802, the drops must deform in order to be able to pass each other 
and engage in periodic motion. This means that there is a lower limit on the 
capillary number below which surface tension prevents the development of high- 
curvature regions that is necessary for substantial interfacial deformations. Under 
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FIGURE 4. Comparison of the geometrical variables and effective stresses of an infinite doubly 
periodic suspension with those of a four-layer suspension bounded by plane walls studied by 
Zhou & Pozrikidis (1993b). (a)  Evolution of the Taylor deformation parameter D (solid line) and 
orientation angle 6' (dashed line) of the drops shown in figure 3 for 4 = 0.7495 and Ca = 0.02527. 
Bold-faced curves correspond to the present results, plain curves correspond to the results of Zhou 
& Pozrikidis (1993b). (b) Evolution of effective viscosity ~ E F F  for 4 = 0.7459 and Ca = 0.02527; 
solid and dashed lines represent, respectively, the results of the present study and those of Zhou & 
Pozrikidis (1993b); (c )  same as (b)  but for the normal stress difference N ;  ( d )  same as (b)  but with 
Ca = 0.2527; ( e )  same as (c )  but with Ca = 0.2527. 

these conditions, the drops will press against each other under the action of the shear 
flow, and eventually coalesce thus destabilizing the emulsion. On the other hand, 
there is a maximum value of the capillary number beyond which surface tension is 
not able to resist the deforming action of viscous stresses, and the drops will continue 
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FIGURE 5. Phase diagram for the behaviour of a concentrated emulsion in simple shear flow in 
terms of (4,Ca). The small dots represent cases where periodic motion is established, the large 
dots represent cases where the drops coalesce at a finite time, and the medium dots represent cases 
where the drops exhibit continued elongation. The dashed line separates ‘wet’ from ‘dry’ foams. 

to elongate due to the straining component of the incident shear flow. Both the upper 
and lower critical capillary numbers are functions of the volume fraction 4. 

In figure 5 we present a phase diagram for the behaviour of a concentrated 
emulsion constructed from the results of the present numerical computations. The 
volume fraction for circular drops at maximum packing is equal to 0.9069, and higher 
volume fractions require non-circular initial shapes. 

For the combinations of volume fractions and capillary numbers that fall within 
region I, we observe stable periodic motion. For values within region 11, the drops 
exhibit continued elongation through a sequence of convoluted shapes illustrated 
in figure 6(a-e) for 4 = 0.9069,Ca = 0.2. Failure to approach a periodic state is 
evidenced clearly by the monotonic increase in the drop perimeter shown in figure 6(f); 
when the drop shapes become convoluted, the Taylor deformation parameter is a less 
useful diagnostic. The thickness of the films that separate adjacent drops decreases in 
time, but a strong tendency for coalescence is not evident in the numerical solution. 
In region I11 of figure 5, where Ca is smaller than the lower limit below which surface 
tension prevents the development of regions with high curvature, the interfaces overlap 
after a finite time. The details of this motion will be analysed further in $6.5. 

Previous theories of foam have classified concentrated emulsions into two cate- 
gories depending upon the volume fraction (Reinelt & Kraynik 1990). Wet foams 
occur when the volume fraction falls within the range 0.9069 < 4 < 0.9466, and 
their distinguishing feature is that the structure of the periodic cells and associated 
rheological properties of the suspension vary continuously with the shear strain or 
unit cell deformation. The lower limit 4 = 0.9069 marks the threshold for the onset 
of thin-film flows that characterize a foam. Below this volume fraction, an analysis 
in terms of thin films and Plateau borders is not appropriate. Dry foams occur 
when 4 > 0.9466, and their distinguishing feature is that discontinuities in both the 
structure of the periodic cells and associated rheological properties occur at a certain 
value of the global strain or deformation. It is interesting to note that region I in 
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FIGURE 6. A sequence of drop profiles for 4 = 0.9069 and Ca = 0.2 at times (a) t = T ,  (b)  2T,  
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figure 5 ends near the theoretical threshold 4 = 0.9466 which has been established 
from pure geometrical considerations in previous theories of foam. 

6.1. Geometry of the periodic motion 
Concentrating on region I of figure 5,  where periodic motion is established, we analyse 
the geometry of the evolving cells and discuss the numerical results in comparison with 
previous theories of foam. At the initial instant, the drops have a regular hexagonal 
shape with their corners rounded to circular arcs of radius ro, which are the radii of 
the Plateau borders. A typical initial arrangement is illustrated in figure l(b). The 
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volume fraction of the dispersed phase 4, film thickness 2h0, cell size b, and radius of 
the Plateau borders ro are related by 

In figure 7 we present a sequence of drop profiles for 4 = 0.93, t- = 0.0244 and 
Ca = 0.02. Figure 7(a)  defines the base parallelogram OABC corresponding to a 
unit cell. The base triangle OAB contains three films F1,F2 and F3, labelled in 
the clockwise sense. Inspection of figure 7 shows that, after an initial transient 
period depicted in figure 7(a-e), the suspension evolves in a periodic fashion with 
period kT = 2 / f i  which is identical to the period of recurrence of the base lattice 
(figure 7e-e’). 

The theory of foam describes the structure of an emulsion in terms of fundamental 
geometrical modes (Princen 1983). Mode I describes the structure when a Plateau 
border is connected to its neighbours via three thin films. A transition from Mode I 
to Mode I1 occurs when the length of one of the films vanishes. This requires that 
two Plateau borders coalesce, and the interfaces enclosing the borders join in pairs. 

Examining the periodic motion in figure 7 we find a single transition from Mode 
I (figure 7e-h) to Mode I1 (figure 7i-k), then back to Mode I (figure 7e’) within 
each temporal period. Furthermore, we note that the times corresponding to the 
configurations shown in figure 7(e’) and figure 7(e)  differ by k T ,  and this suggests 
that the drops complete one cycle of the so-called ‘hopping’ motion within each 
temporal period (Kraynik 1988). 

Analysing the evolving geometrical properties of an emulsion is another central 
theme of the theory of foam, and a point of departure for establishing its effective 
rheological properties. Princen (1983) developed a quasi-static geometric model to 
describe the structure of a two-dimensional foam as a function of shear strain. To 
compare his predictions with the present results, we note that the displacement of the 
vertices of the unit cell OABC is affine (figure 7a),  and identify the shear strain with 
kt. 

In figure 8, we present a series of Plateau border configurations at a sequence of 
characteristic times for 4 = 0.93 and Ca= 0.02. We observe an initial clockwise rota- 
tion of the base triangle OAB connecting three adjacent drop centres, and recession 
or drainage of film F2 into the Plateau borders (figure 8a-c). As the motion leads to 
Mode 11, film F2 disappears as shown in figure 8(d). The Plateau border continues 
to rotate under the influence of the shear flow, and this leads to a configuration 
in which the two pairs of films in the unit cell are aligned and the drops assume 
the shape of parallelograms with rounded corners (figure 8e). At that time, a new 
film is generated at the centre of the Plateau border and the arrangement shown in 
figure 8(f) is rapidly restored. This rapid structural rearrangement causes the drops 
to overlap at large volume fractions and small capillary number as will be discussed 
in 56.5. 

The general features of the motion described above are consistent with those 
postulated in the quasi-static theory of foam (Princen 1983). We note, in particular, 
that the theory of foam considers the shape shown in figure 8(e) to be unstable, which 
is consistent with the rapid rearrangement observed in the computations. As a minor 
difference, we observe that the initial configuration with the perfectly hexagonal drops 
is not fully restored, as is assumed to occur in the theory of foam. Furthermore, 
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FIGURE 7 (a-f). For caption see facing page. 

we find that the suspension reaches a periodic state after a finite time period that 
depends on the initial configuration and Ca for a fixed volume fraction 4. 

6.2. Quantitative comparison with the quasi-static theory 
We proceed now to examine the premises and predictions of the quasi-static theory 
of foam in a more quantitative sense, in the light of the numerical computations. In 
Princen's (1983) quasi-static analysis, during Mode I the thin films meet at three-fold 
symmetric triangular Plateau borders whose radius of curvature po depends upon 
the volume fraction 4, and the angle subtended by each pair of films is equal to 
120". In figure 9 we plot (a)  the maximum curvature of each surface enclosing the 
Plateau border in triangle OAB of figure 7, and (b )  the angle subtended between 
each pair of films during Mode I against the angle a defined in figure 7(a), for the 
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FIGURE 7. A sequence of drop profiles for 4 = 0 . 9 3 , ~  = 0.0244 and Ca = 0.02 at times (a) t = 0, ( b )  
0.3T, (c )  0.6T, ( d )  0.9T, (e )  T ,  cf) ; T ,  ( g )  ST, (h)  Y T ,  (i) Y T ,  0') Y T ,  ( k )  Y T ,  (el) 2T, where 
kT = 2 1 4 .  

typical case 4 = 0.93 and Ca = 0.02. Note that a is related to the shear strain within 
one period of motion by kt  = l/d - cot a. The numerical results reveal during 
Mode I that the maximum curvature of the arc connecting F 3  to F 1  is substantially 
lower than that of the other two arcs. Physically, this behaviour may be attributed 
to the compressive action of the shearing flow in the direction obtained by rotating 
the xl-axis 45" clockwise. Correspondingly, the angle subtended by F1 and F2 is 
approximately equal to 102, while the angle between F 3  and F1 is approximately 
equal to about 138" (figure 9b). These results indicate that the assumption of identical 
radii of curvature for the Plateau border and equal subtended angles between films is 
not justified under the present of conditions. 
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( b )  0.1T, (c )  0.2T, ( d )  0.4T, (e )  0.67T, (f) T ,  where kT = 2/& It should be noted that the drop 
interfaces do not cross each other when viewed in a magnified frame around the thin film region in 
panel (f 1. 

In figure 9(c-e), we plot the extended lengths of the three films as functions of a 
and compare them to the predictions of the quasi-static theory of foam, shown as 
solid lines, during Mode I. The extended length of a film is defined as the distance 
between the centres of the two Plateau borders at which the film ends. Despite the 
fact that the assumptions of the quasi-static theory are not fully justified, we observe 
good agreement. For instance, the theory predicts that F1 and F3 elongate while F2 
shrinks, and Mode I ends when the two Plateau borders in the unit cell 'contact' each 
other. Both of these features are observed in the numerical computations. 

Furthermore, the quasi-static theory builds on the fact that, when mode I1 is 
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FIGURE 9. Comparison of the numerical results with the predictions of the quasi-static theory of 
foam. (a) Maximum curvature K ~ A X  of the interfaces enclosing the Plateau border in Mode I 
plotted against a: -----, interface connecting F 2  and F 3 ;  -, F1 and F 2 ;  -.-, F3 and F 1 ;  
( b )  angles subtended between films us. CI: ----- , angle between F 2  and F 3 ;  -, F1 and 
F 2 ;  -.-, F3 and F 1 ;  (c )  extended length of film F2, Lz, defined in the text, us. a: -, predicted 
by quasi-static theory; -----, obtained from numerical simulation; ( d )  same as (c) but for film 
F 3 ;  (e )  same as (c) but for film F 1 ;  v) maximum curvature of the interfaces enclosing the Plateau 
border in Mode I1 us. CI. 

established, the four interfaces of the two merging triangular Plateau borders have 
identical radii of curvature p that are functions of the shear strain. At that point, 
symmetry requires that the four arcs form two symmetric pairs. In figure 9(f) we plot 
the evolution of the maximum curvature of the two pairs and observe appreciable 
deviations which underline the limitations of the quasi-static theory. We also find that 
the computed film lengths, not presented in the figures, show substantial differences 
from those predicted by the quasi-static analysis. The coalescence of the Plateau 
borders in Mode I1 may be interpreted as the result of the compressive action of the 
applied shear flow, and we find no compelling physical argument that the interfaces 
must assume identical radii. 

6.3. Flow within the thin films and Plateau borders 
Analysing the flow field within the thin films and Plateau borders allows us to identify 
the physical mechanisms that govern the evolution of the microstructure. 

In figure 10, we illustrate the structure of the velocity field within the thin films 
F1, F2, F3 in figure 7(a) and the associated flow at the Plateau border within triangle 
OAB of figure 7(a), in a frame of reference moving with the mid-points of the films or 
centres of the Plateau borders, for 4 = 0.93 and Ca = 0.02, at certain characteristic 
stages of the evolution. 
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FIGURE 10 (a ,b) .  For caption see facing page. 
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FIGURE 10. The structure of the velocity field within the thin films and Plateau borders at times (a) 
t = 0.03T, (b)  0.3T, ( c )  0.6T, ( d )  0.9T, where kT = 2/& in a frame of reference moving with the 
mid-points of the films or centres of the Plateau borders for 4 = 0.93 aDd Ca=0.02. The associated 
structures of the emulsion at these stages are shown in figure 7. 
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Figure 10(a) corresponds to t = 0.037', a short time after the shear flow has 
been applied. The associated structure of the emulsion is almost identical to that 
shown in figure 7(a). Figure 10(a) shows that the velocity within the films is nearly 
parallel to the interfaces, the magnitude of the velocity is highest at the transition 
zones connecting the Plateau borders to the thin films, and the velocity profile in the 
transition zone is nearly flat with a small parabolic component. Since the pressure 
at the Plateau borders is lower than that in the thin films, drainage occurs within all 
three films at this stage. The incident shear flow causes films F3 and F1 to slowly 
rotate in the clockwise direction, while it compresses film F2, thereby opposing its 
thinning due to draining. The length of F2 decreases as the interfaces peel off the 
centre of the Plateau borders. The corresponding velocity field at the Plateau border 
shows that the fluid recedes and causes the expansion of the Plateau borders. 

As time proceeds, the thickness of films F3 and F1 is reduced, but the rotation of 
the interfaces due to the shear flow has an effect on the rate of drainage, and prevents 
drop coalescence. We identify this as an important mechanism responsible for the 
stabilization of the emulsion. The flow within the films at t = 0.3T, corresponding to 
the profiles shown in figure 7(b), is illustrated in figure 10(b). The shear flow dominates 
the motion within film F2 and causes it to shrink and eventually disappear. The flow 
field at the Plateau border is characterized by a weak clockwise rotation. 

At t = 0.67' the Plateau borders have joined in pairs as shown in figure lO(c), F2 
has virtually disappeared, and the suspension has entered Mode I1 (figure 7c). Film 
F3 has substantially thinned and become aligned with the direction of the shear flow, 
whereas film F1 rotates in the counterclockwise direction against the applied shear 
flow. The drops tend to roll over each other, reflecting the fact that the flow at the 
merged Plateau border is characterized by a straining motion with principal axes 
oriented at 45" with respect to the shear flow. The magnitude of the velocity at the 
Plateau borders has increased dramatically, indicating that a structural rearrangement 
is likely to occur at this point. To this end, we digress to remark that the high rate of 
change of the velocity around the Plateau borders necessitates the use of a high-order 
adaptive time-advancing scheme, such as the RKF45 method described in $3, to 
ensure sufficient accuracy. 

At the stage corresponding to figure 7(d), for t = 0.97', film F3 continues to rotate 
in the clockwise direction, whereas film F1 assumes its original vertical orientation 
with a somewhat reduced length. At that point, the merged Plateau borders separate 
to form new junctions, and a new film is born. Inspecting figure 10(d) shows that the 
straining motion has relaxed, and the magnitude of the velocity at the newly formed 
Plateau borders returns to lower levels familiar from the earlier stages. 

Previous efforts to model the hydrodynamics of foam have relied on a series of 
assumptions including the assumption that the interfaces in the transition zone that 
join the thin films to the Plateau borders are immobilized due to the presence of 
surfactants (Reinelt & Kraynik 1990). Since our formulation neglects the effects of 
interfacial rheology, a critical comparison with the predictions of these theories is not 
appropriate. 

X .  Li, H .  Zhou and C.  Pozrikidis 

6.4. Efective stresses 
Having described the structure of the foam and velocity field in some detail, we turn 
to address the behaviour of the viscometric functions including the effective shear 
viscosity ~ E F ~  and normal stress difference M defined in (2.7). In figure ll(a) we 
present the evolution of p E F F  and JV for C#I = 0.93 and Ca = 0.02. At the initial 
instant, p E F F / p  = 1 and M / ( p k )  = 0 because the drops assume a six-fold symmetric 
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shape. Not surprisingly, we find that both ~ . ~ E F F  and N evolve in a periodic manner 
after the initial transition period. The amplitude of the oscillations is larger than 
that observed in 0 5 for small and moderate volume fractions. Furthermore, the mean 
value of the normal stress difference is substantial, which indicates a pronounced 
elastic behaviour. 

Comparing figure l l(a) with figure 8 of Reinelt & Kraynik (1990), we find good 
agreement between the numerical results and the predictions of the quasi-steady 
theory. Common features are that p E F F  reaches a maximum value right before the 
middle of each period, and decays rapidly to negative values before it returns to its 
initial value at the beginning of the next period, and N is a nearly even function 
within each temporal period of evolution. 

To investigate the effect of Ca on the viscometric functions, in figure ll(b,c) we plot 
pEFF and N over one period kT = 2/$ for 4 = 0.9069 and Ca= 0.02,0.06,0.08. To 
facilitate the comparison, the origin of time has been adjusted so that the curves begin 
with their mean values. We observe that the amplitude of the oscillations increases as 
Ca is reduced, and pEFF assumes negative values when Ca becomes sufficiently small. 
Furthermore, as Ca is increased, the mean values of both ~ E F F  and N decrease, and 
the foam behaves like a shear-thinning material. 

The effect of 4 on the viscometric functions for a constant capillary number may 
be deduced from figure ll(d,e), illustrating the evolution of ~ E F F  and N over one 
period for 4 = 0.9069,0.92,0.94 and Ca = 0.06. The results show that the average 
value of pEFF over one cycle increases monotonically with 4, but the average value 
of N is rather insensitive to 4. Overall, the behaviour of the viscometric functions is 
similar to that predicted by the quasi-steady theory for wet foams (figure 9 in Reinelt 
& Kraynik 1990). 

To characterize the rheological properties of a suspension in a global sense, we 
compute the time-average values of the viscometric functions pEFF and z over one 
cycle of the periodic motion at large times. Using the film-level lubrication analysis, 
Reinelt & Kraynik (1990) predicted p E F F / p  - Ca-'l3 and J l ' / (y /b)  - C O + O ( C ~ ~ / ~ )  for 
small Ca, where CO is a positive constant dependent upon the volume fraction 4 alone 
(equations (5.22), (6.1) and (7.2) of Reinelt & Kraynik 1990). In figure ll(f,g), we plot 
ln(pEFF/p) us. In Ca and p / ( y / b )  us. Ca for 4 = 0.9069 and Ca = 0.05,0.06,0.08,0.1. 
Assuming a power-law relation of the form p E F F / p  - Cap, we find that the exponent p 
increases from -0.8 to -0.386 as Ca is decreased. The numerical results in figure ll(f) 
suggest that as Ca becomes smaller, the exponent in the assumed power-law relation 
approaches the asymptotic value predicted by the quasi-steady theory. Furthermore, 
as shown in figure ll(g), >/(y/b) oscillates about the value 0.0655, which is very close 
to the value read from figure 14 of Reinelt & Kraynik (1990). Overall, although there 
are differences in the assumed physical conditions, we observe satisfactory agreement 
with the predictions of the quasi-steady analysis. 

6.5. Coalescence of drops and collapse of thin films 
The numerical results indicated that, at sufficiently large values of 4 and small values 
of Ca, the interfaces cross each other and the drops coalesce in a finite time. A typical 
configuration with overlapped interfaces is illustrated in figure 12 for 4 = 0.94 and 
Ca = 0.05. This behaviour appears to be physical, as corroborated by the fact that 
refining the spatial resolution or decreasing the size of the time step does not prevent 
coalescence. 

To provide a physical explanation and establish criteria for coalescence, we recall 
that the drops tend to press against each other, but also roll over each other under the 
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FIGURE 11. (a) Evolution of effective viscosity p E F F ( - )  and the normal stress difference ,Y(-----) 
for 4 = 0.93, Ca = 0.02; (6) effective viscosity ~ E F F  for 4 = 0.9069 for different capillary numbers 
Ca: -, 0.02; -----, 0.06; -.-, 0.08; (c )  same as (6) but for the normal stress difference 
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FIGURE 12. Overlapping drops in a dry foam for 4 = 0.94 and Ca = 0.05 at time t = 0.97T. 

influence of the incident shear flow. Previous asymptotic analyses of the flow in the 
lubrication zone between two colliding drops indicate that the interfaces will coalesce 
in a finite time (Davis, Schonberg & Rallison 1989), and this suggests that coalescence 
will occur if a particular section of an interface is allowed to press against another 
section for a sufficiently long time. In the present problem, the time of contact is 
determined by the rolling motion which, in turn, depends upon the capillary number 
and volume fraction. When periodic motion is established, the rolling motion is fast 
enough so that the films are restructured before the interfaces have had enough time 
to coalesce. 

It is possible to continue the computations after coalescence by assuming that the 
thin films do not rupture but merge to form a black film of vanishing thickness. 
Implementing this extension is under current investigation. 

The authors wish to thank Professor Russell Caflisch for helpful discussions. This 
research is supported by the National Science Foundation Grant under grant CTS- 
9216176 and the Department of Energy. Partial support was provided by the Exxon 
Education Foundation. Computer time is provided by the San Diego Supercomputer 
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Appendix. Computation of the two-dimensional doubly periodic Green’s 
function 

We consider the flow due to a doubly periodic lattice of two-dimensional point 
forces in the (x,y)-plane. One of the point forces is located at the position 20 and the 
rest of them are separated by the lattice vectors 

Xl = i l a l +  iza2 (A 1) 

where al, a2 are two arbitrary base vectors in the (x, y)-plane and i l ,  i2 are two integers. 
As a preliminary, we introduce the reciprocal base vectors bl and b2 defined as 

2.n 2.n 
A A 

bl = -a2 x k, b2 = -k X al, 
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where A = la1 x a21 is the area of one periodic cell and k is the unit vector along the 
z-axis. Based on (A 2), we construct the reciprocal lattice in wavenumber space with 
lattice points at 

where j l ,  j 2  are two integers. The physical and reciprocal lattice points satisfy the 
equation 

where m is an integer. 
The velocity field due to the above doubly periodic array may be expressed in 

terms of the corresponding Green’s function GDP as ui = 1/(4np)G$Pgj, where g is 
the strength of each of the point forces (Pozrikidis 1992, Chapter 3). Expanding the 
velocity and pressure in Fourier series, and substituting them into the Stokes equation 
and continuity equation, provides us with 

a:, = jlh + j2b2 (A 3) 

X I  * a2 = 2nm (A 4) 

Unfortunately, the sum in (A 5 )  is slowly convergent, and this makes the compu- 
tation of the Green’s function in terms of Fourier sums prohibitively expensive. To 
overcome this difficulty in the analogous case of a three-dimensional flow due to a 
three-dimensional array of point forces, Brady et al. (1988) and Pozrikidis (1993) 
recast the Fourier series in terms of two Ewald sums developed earlier by Beenaker 
(1986). The procedure is outlined in the appendix of Pozrikidis (1993). The final 
expression contains a lattice sum in real space, and a complementary lattice sum 
in reciprocal space. An analogous development is possible for the present case of 
two-dimensional flow, but the final expression involves integrals of Bessel functions 
over infinite domains that are costly to compute. 

A better way of computing the two-dimensional Green’s function is to integrate 
its three-dimensional counterpart in the z-direction over one period (Li & Pozrikidis 
1995). The final result is 

where 

and 

4 G, ( 2 )  ( X , a )  = (1  + $02 + &04)exp(-Lo2) 

with o = IaI/ t .  The functions C and D are given by 

2 
~ ( x )  = erfc(x) + -(2x2 - 3)x exp(-x2), 

and 
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The terms within both sums in (A 6) decay at an exponential rate with respect to 
their arguments. 

The variable l is a free parameter of the Ewald decomposition method that 
determines the relative contributions of the sums in real and reciprocal space. As 5 
tends to infinity, the contribution of the sum in physical space is reduced, and we 
recover the Fourier solution (A 5). As 5 tends to zero, the contribution of the sum 
in reciprocal space is reduced, and we obtain the Green's function as a sum of the 
two-dimensional Stokeslets associated with the individual point forces. When l = 0, 
however, the sum diverges, indicating that the limit is singular. 

The exponential decay of the terms within the sums in (A 6) allows us to truncate the 
limits of summation to a finite level that depends on the value of 5 .  Given the shape 
and size of a unit cell, there is an optimal value o f t  that minimizes the computational 
effort for a specified level of accuracy. Since the summation in real space, expressed 
by the first term in (A 6), involves the numerical evaluation of two integrals, whose 
computation will be discussed later in this appendix, we choose a value of l that is 
large enough so that the computation is biased towards the reciprocal lattice. For 
example, when a1 = (2,O) and a2 = (-1, fi), we choose < = 2.3 which sums over 9 
lattice points in real space and 64 lattice points in reciprocal space, yielding accuracy 
up to the seventh significant figure. Each evaluation of the Green's function requires 
0(10-4) seconds on the CRAY C90 of the San Diego Supercomputer Center. 

Both integrands in (A 7) become singular as the variable of integration z and 1x1 
tend to zero. To compute the first integral in this limit, we rewrite it in the form 

We note that the function C(x) decays like exp(-x2) for large values of x, truncate the 
domain of integration to a finite interval [0, N ( < ) ] ,  where N ( < )  is a positive constant 
dependent on the value of 5 ,  and subtract off the singularity by writing 

The regular integral on the right-hand side of (A 12) is computed using the 20-point 
Gauss-Legendre quadrature. A similar method is applied for the computation of the 
second integral in (A 7). 
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